
Lecture 2 : Rényi Entropy
Anatomy of the paper :

1. Introduce Ha (P )
2.
"Motivate " Hdcp) via
axioms / postulates

3. Rényi divergence
4. Applications to Markov chains

Def's:( Rényi) Entropy of
order 2

,
where 2>0 and

✗ 1=1
,
is given by

n

Halpl , Pa, . . . ,Pn)=log.at?=,PKd)=HaCP)
② probability distribution

e.9 . pre> 0 31 £? pre =L



Special Cases (or Limiting cases) :

2=1 : Shannon Entropy
dim H2 (pi >Pa, . . . ,Pn)= E

k= ,
PK 1092¥

201

= H ( pi , Pa , . . . ,Pn) = th (P)

2=0 : max -entropy or Hartley
Entropy

Hocpi , Pa , . .Pn) = log n
← size of

support
✗=D : min -entropy set
him Hacpi , Pa, . .. ,Pn) = min
✗→0 keg ,, . .. ,ng↳¥K
= HD (pi , P2 , - . . ,Pn)

2=2 : " collision " entropy n
ttacpi, Pa , . . . ,pn)= - toga ( E

k=,
Pra)

= toga p¥=Xa]
where X,

,
✗2 are into 31 ✗ , ,Xa~P



Cases :

- P is equiprobable on { 1, . . . ,n}

HIP) = log n
- P is deterministic

⑦[✗= 1) = 1

HIP) = 0

Axiomaticrspective
Postulates for Shannon

Entropy ( due to Fadeev)

(a) t (pi ,Pa, . . . ,Pn) is a
symmetric fame . of variables
for h = 2,3 , . . .

(b) H (p , i- p) is continuous
function of p for 01ps 1 .

(c) H C "2
,

"2) =L Chain

(d) Http, , Itt)p , , pa , . .. ,pn)b
""'e

HCX,Y)
= HCP, ,Pa , . . . ,Pn) + Pitt (t ) 1-E) = Hcx) +1-1141×1
for any distribution P and 0<-1-4



• Consider changing (d) to
(d) H (9*0)=1-1 (B)+ HCQ)

9
direct product ( productdistribution)

HC✗
,
Y) = HCX) + tic 's)
if ✗ and Y are
independent

claim : Hac . ) satisfies (a)(b)
(e)

,
Cd ' ) . ( cheek) .

Ha ( X
, 4) = Ha (X) +Halt)

② if ✗
, Y are independent.



2. Motivating tlacp)
•

" Generalized distributions "

n

P = Cpi , Pa , . . . ,Pn) S.t. 0¥, Phet
and PK 20 .

Consider this setting for technicalreasons.

• Mean values: " information "

in observation K C- { 1
, .
. .

,
n]

it is given by Éplk)= log ¥
where P[ ✗=k]=pk

• Shannon Entropy: arithmetic
mean of information

n n

th (8) = E pre log pt =L pkipck)
K=/ K=c

o Kolmogorov - Nagumo mean

g-
' ( É wkgcxr,))

k=1
②
strictly

② data points
monotonic and continuous



Examples :

- gcx)=a×+b arithmetic
mean

- gcx)=¥ gives harmonic

mean

- g. (X) =P quadratic
mean

• Rényi Entropy : g-mean
with

Ga (✗7=212
-1) ✗

Thus
,
it is a different

way to find average information
in an information source .



Postulates
Pi : 71 ( P) is asymmetric function
②
same se# all the elements
as in

GPI : HC { p}) is a continuousfunction of p on the
interval Ocp e- I

Pz: HCE 's})- I

Pay : For P, Q C- 0 We have

4 H(p*Q)= HCP)+HCQ)
Entropy for independent

events is additive

( d ') in Sec 1 . weight
or

Pg : For P ,Q C- 8 and WCP)+WlQK1

HCPUQ)="I¥IY¥



• Thm 1 : Shannon Entropy
is characterized by
P, -Ps .

Ps! HCPUQ)=g_[w¥¥t
☐ Thon 2 : 1-12CP) satisfies

Pi - Pu
, Psl

• Main takeaway :

this is a motivation for

tea ( P) being a "good "

measure of information



See . 3 - Rényi divergence of
order &.

Deft: Rényi divergence of order ✗
,

✗so 13 2=11 is given by

Dd (QIIP)=I2( QIP)
h

= logs ( E. g.Epi")

- As before
←
KL-divergence

Lim Da CQIIP) = DCQIIP)
281

- KL Divergence / relative entropy
is an arithmetic mean

of
IQ ,,p (K)

= hog §÷
- Rényi divergence is the

g-mean of IQ, /pck)

- Thon 3 characterize DCQIIP)
an Dsn ( Qnp )


